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Work on this project was distributed to various tasks. The first was design construction

and calibration of a simple, 6ne-degree;of-fréedom model. The second was the development

of fuzzy-logic software needed to control the motion. The third was appropriate balance

systems and dynamic calibration techniques.

1. One-and two-degree of freedom simulators

A roll moment balance system was designed and constructed. The system was mounted

P

to a stepper motor via a shaft which played the role of a roll actuator. " The electronic

components and software necessary to provide direct feedback were constructed and tested.

At the end of the balance, a bar was mounted and connected with springs to demonstrate
the simulation of harmonic motions. The system then was operated as follows. The bar was
displaced from its equilibrium position and then was released. The couple exerted by the
springs was detected by the balance system and was fed to the computer. The computer
then integrated the differential equation of the motion by a small time step, for a prescribed
artificial moment of inertia and determined the corresponding angular rotation A¢. It then
activated the roll actuator to perform a rotation A¢@. The process was repeated and thus

harmonic motions were executed.




The package was debugged and a delta wing model has Béen mounted on the sting. The
plan is to employ this mechanism in order to simulate wing rock in the wind tunnel. The
advantage of this approach is that then the moment of inertia of the model will be entered as
a parameter of the software. Combined motions were tested subsequently. To this end the
software was prepared which allows the operation of the three-degrees-of-freedom dynamic
strut described in the proposal. This simulation is described in Appendix I. This was the

senior project of Mr. Tomlin, one of the undergraduate students who worked on this project.

A second generation roll moment balance system was then designed and constructed.
The system was mounted to a stepper motor via a shaft which played thé role of a roll
actuator. The electronic components and software necessary to provide direct feedback were
constructed and tested. A schematic of the drive hardware can be seen in Fig. 1. The
system bulk has been reduced from this initial design by the use of smaller bearing houses,

fewer bearings, and a smaller motor.

A second generation load cell has also been constructed using a very thin (0.005”) alu-
minum tube. The new load cell greatly exceeds the sensitivity of earlier designs but still
maintains sufficient structural strength to withstand the dynamic loads which it must trans-
mit from the model to the sting. Sensitivity was further increased by the mounting of two

parallel, high resistence strain gauge bridges on the cell.

Because of the small forces being measured in this experiment, amplification is necessary
to achieve a useful output from the system. Still, the system has been plagued by electro-
magnetic noise which adversely affects the closed loop control of the model by introducing
no-load instability. A great deal of effort has gone into the solution of this problem and noise

has been reduced to an acceptable level.

A method to accurately calibrate the load cell was also developed. The calibration scheme
incorporates a fuzzy logic system so that the calibration can be adapted to any changes in
system response due to changes in mechanical or environmental states. Unfortunately, this
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phase of the work has not yet been completed.

Development of a pneumatically driven “mini-DyPPiR” is underway. This system will
allow for three-degree-of-freedom dynamic control of the model and would again employ an
adaptive fuzzy logic control system. If successful, the mini-DyPPiR would be superior ot
the current stepper-motor driven rotational system, because it would offer emooth rotation
at low speeds. Because of the nature of stepper-motors, the high sensitiity load cell picks up

vibrations from the motor at low stepping rates.

2. Fuzzyv Logic Controller

It is anticipated that complex feedback loops will be necessary to control model motions
in the wind tunnel. It is believed that the prediction of such motions and their controls can

be achieved more efficiently with fuzzy logic techniques.

A computer program was written and tested As 1nput to the program we employed the

readmg of pressure transducers connected with a seven—hole probe The de51red output was
the actual orientation of the probe as well as the static and dynamic pressure. The program '
was employed to generate static pressure, dynamic pressure and three-components of the

velocity in terms of the signals obtained by the pressure transducers.

~

As a first step, the code was employed for system identification in high-alpha delta-wing
unsteady aerodynamics. A delta wing, equipped with cavity flaps or an apex flap, was
tested executing pitch-up maneuvers while the flaps are dynamically employed, aiming to
modify and control the behavior of the two leading-edge vortical structures and thus their
effect on the pressure distribution and aerodynamic loading of the wing. The fuzzy identifier
was constructed to predict the temporal evolution of the leeward pressure distribution and
the aerodynamic loads for given time histories of pitching, «(t), &(t), and flap deployment

é(t), é(t). Work on this topic is described in greater detail in Appendix II.

The fuzzy logic system used in this experiment is based on an optimized system as
outlined by Wang! for identifying non-linear systems in control applications. The program
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which was used has been under development with the goal of eventually controlling systems
whose aerodynamic/hydrodynamic effects are too complex to model for classical control
purposes. In its early stages of development, the program has been used successfully to
fit complex curves based on partial data sets. It accepts as input the following data: A
cluster radius for determining the complexity of the fuzzy rule base, a Gaussian membership
function shape variable which determines the effect of a fuzzy rule on its surroundings, and

the training input-output pairs.

The cluster radius determines the minimum amount that one point in the training data
must differ from all other points in order to be part of a new fuzzy rule. The advantage of
this clustering method is that for any given system and cluster radius, there is a limit to the
number of fuzzy rules which can be created. Thus the cluster radius directly determines the
complexity of the fuzzy rule base for any given system. Here, the cluster radius was chosen
so that each input-output pair created a new rule, thereby ensuring that the program would

return accurate values at the original data points.

The Gaussian membership function shape variable has by far the most significant effect
on the smoothing effect of the predictor program and therefore the most care must be taken
in its specification2. If the shape variable is too small, then all predicted values will take
on the magnitude of the nearest fuzzy rule, resulting in large regions of like points. If,
on the other hand, the shape variable is chosen too large, then a fuzzy rule will affect a
large area of surrounding values, possibly including other rule supports or center values.
This will result in very smooth but inaccurate results. It is, therefore, imperative that a
reasonable compromise be determined between these conditions. For the purposes of this
experiment, this compromise was found through trial and error, although it seems likely
that with a thorough knowledge of the input-output ranges and the cluster radius, a more

rigorous method of determining this value should be possible.

To further test this software it was decided to employ a dynamic mechanism which is

4




available and operational. This involved the response of a ship hull to oncommg waves. The

fuzzy logic system was trained w1th data 'vbbtalned w1th dlfferent wave chara.ctemstlcs and‘
shTﬁTﬁmdences. The 1dea was to train the artificial mpe}hgence system to predict the response
of t}_le Qessel, namely pitch and roll chafacteristics to new conditions. More specifically, the
ship “learns” to rgcognize the condition of the sea it finds itself 1n _It then ﬁfediqts.hq\yd.ifp‘ .

will response, if it points in a different direction.

The data taken for this experiment consisted of 13 angles of incidence ranging from -30°
to 30° in 5° increments. The incident waves were generated at three different magnitudes at
0.25 Hz and 0.5 Hz for a total of 78 different data sets. Each data set in turn contained time
records of two water level transducers separated by 21”, the roll angle of the ship and the
pitch angle of the ship. Each time record was 10 seconds long and was sampled at 100 Hz.
Unfortunately, it was determined after the data had been taken that the largest magnitude
wave at 0.5 Hz was affected by some sort of mechanical interference and thus had to be

removed from the training set.

To test the code, a case for intermediate values of the parameters was predicted. At these
values of the parameters data were also obtained which were not employed in the training of
the fuzzy-logic system. In this way it was possible to compare directly the predicted behavior

against experimental data.

Typical results are presented in Figs. 2 and 3 for roll and pitch respectively, for an
incidence of 15° at a wave frequency of 0.5 Hz. The phase and frequency of the response of
the model are predicted reasonably well. However, the waveform contains higher harmonics

which are not present in the actual data.

This work was presented at an ASME meeting and is described in greater detail in
Appendix III. The method was subsequently applied to predict pressure distributions over a
delta wing controlled by deployable surfaces. This was presented at an ATAA conference. The
paper is attached as Appendix IV. The latest development on this project will be presented
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at the ATIAA annual meeting in January 1998. A first draft of this paper is attached as

Appendix V.
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4. Student Performance

Two undergraduate students have worked on this project. Mr. Tim Tomlin developed
and tested the first simulator. He was later accepted in the graduate school but decided
to work on another project. Mr. Christopher Moore, a graduate student, has carried out
most of the work on this project. His efforts were somewhat hampered by the fact that the
mother project, namely the main project which this AASERT was supposed to complement
was not renewed. Mr. Moore earned a Masters degree and continued for a while his efforts
but then unfortunately for the progress on this effort and perhaps fortunately, for him, he
decided to get married and accepted a lucrative offer from industry. Due to lack of funds,
it was not possible to use the Dynamic Strut in the VPI Stability Tunnel which this group
has helped design and construct. It was thus decided to develop an alternative simulator.
This was the project of another student, Mr. Joon Pak, who is an undergraduate student.
Mr. Pak has transferred from electrcial engineering and continues working with this team.
Finally, Mr. Schaeffler, a Ph.D. student, has contributed to this project. Mr. Schaeffler will
defend his Ph.D. dissertation in December 1997.

5. Publications

The following publications have resulted from this project and are attached as Appen-

dices to this final report.
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Fig. 1. The dynamic roll actuator/loadcell mechanism.
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Fig. 2. Predicted and actual roll of the model at a wave incidence of 15° and a frequency of
0.5 Hz.
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Fig. 3. Predicted and actual pitch of the model at an incidence of 15° and a frequency of
0.5 Hz.
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Abstract

Fuzazy logic and neural network system-identi-
fication and control techniques are employed in high-
alpha delta-wing unsteady aerodynamics. A delta
wing, equipped with cavity flaps or an apex flap, is
executing pitch-up maneuvers while the flaps are dy-
namically employed, aiming to modify and control the
behavior of the two leading-edge vortical structures
and thus their effect on the pressure distribution and
aerodynamic loading of the wing. First a fussy iden-
tifier is constructed to predict the temporal evolution
of the leeward pressure distribution and the aerody-
namic loads for given time histories of pitching, aft),
&(t) and flap deployment (), 4(2).

Introduction

The serodynamics of supermaneuver-performing
aircraft has been a great challenge to aerodynamicists
but still maoy questions in this area are unanswered.
This is partly due to shortage of wind-tunnel hard-
ware able to simulate complex maneuvers of sensor-
instrumented models and allow the measurement of
the properties of the model flowfield interaction. More-
over, when the control of these interactions is desired,
the task becomes understandably overwhelming: dif-
ferent flow-control devices have to be tested, each one
at several different dynamic deployment schedules and
rates, as well as testing of combinations of flow-coatrol
devices. While a sufficiently large data bank of these
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tt Professor, Associate Fellow AIAA
Copyright © 1996 by the American
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test data has been generated, then the daunting ques-
tion emerges: How is all this information efficiently
implemented into the next generation super-agile air-
craft? Since the rapid rates of motion during a su-
permaneuver are beyond the pilot’s response limits,
an active controller between the pilot and the aircraft
is necessary. To reinforce the gravity of the problem,
along comes the inadequacy of the conventional adap-
tive control schemes: the high rates and large motion
amplitudes involved in a supermaneuver preclude the
local linearization of the strongly nonlinear governing
equations. ‘

Schreck et al' demonstrated application in un-
steady aerodynamics of system-identification and
modern control methods based on the use of artificial
neural networks (ANN). There!'?, ANNs were shown
to successfully model vortex dynamics principles. Fur-
ther attempts were also reported later>*. Fussy logic
systems (FLS) appear to be equally capable system
identifiers. Comparisons of the two techniques*?, i.e.,
ANN versus FLS in different applications seem to favor
the latter. However, we believe that neural networks
and fussy logic have complementary strengths and a
symbiotic relationship between the two holds the se-
cret to effective system identification and control.

In this paper we first demonstrate that FLS and
ANN can successfully identify non-linear acrodynamic
systems. Our system consists of a pitching delta wing
with dynamically deployed flaps during the maneuver.
We identify the effect this system has on the tempo-
ral evolution of the leeward-side pressure distribution
as well as the aerodynamic loads. Once a system
model has been generated a fuasy controller will be
constructed with the objective to control the cavity-
flap deployment schedule during pitch-up, so that a
certain optimisation criterion is satisfied, for example,
the maximising of the ratio L/D (lift over drag) for all
times during the maneuver.




iliti tatio

The present research was conducted in the VPI
& SU Stability Wind Tunnel and the ESM Wind
Tunnel. The first has a 6’ x 6' test section and an
excellent quality of flow. This tunnel has been recently
equipped with a dynamic strut which was given the
acronym DyPPiR for “Dynamic-Plunge-Pitch-Roll”
mechanism. The design, construction and calibration
of this facility involved many faculty at VPI&SU,
under the direction of Dr. Roger Simpson and five
years of intensive work. A discussion of the main
elements of the design can be found in Ref. 6 and
the accompanying instrumentation in Ref. 7.

The DyPPiR can provide simultaneous plunging,
pitching and rolling of models on the order of 100 Ib
in weight, at a frequency of up to 10 Hs, depending
on the amplitude of the motion. These motions can
be independently controlled by software. Any combi-
nation of arbitrary motions is possible. In this case,
pitch up motions are executed. Such motions have
been tested earlier in two much smaller facilities®?, a
wind tunnel and a water tunnel and at Reynold num-
bers of the order of 10%. Simultaneous plunging of the
DyPPiR carriage and pitching of the pitch actuator
induces pitching of the model about its quarter-chord
axis. The aim here is to control the leading edge vor-
tices and delay breakdown, while pitching up to high
angles of attack. This is pursued by deploying cavity
flaps.

In the present experiments we employ a 2’ x 3’
deita wing model (Fig. 1) which has been tested
extensively in this facility in steady flow?. The model
is hollow to provide space for instrumentation. The
top surface of the model is equipped with three rows
of presgure taps. Pressure transducers are positioned
beneath the instrumented surface to provide unsteady
pressures with a high frequency response. Fifteen
pressure ports were aligned with a normal to the
leading edge, at a distance of z/¢ = 0.61 from the
apex. A 32-transducer Electronic Pressure Scanner
(ESP) from PSI, Inc. with a pressure full scale of + 20
in H,0 was employed. The ESM Pressure Scanner was
interfaced with a Iaboratory computer and was on-line
calibrated through instrumentation by AEROPROBE
Corp. The system consists of an ESP interface/data-
acquisition board PDA-3101 (31 KHz max sampling
rate) and an ACCUPRES computer-controlled, on-
line pressure calibrator. Figures 2(a) and 2(b) present
the coordinate system used and the pressure port
distribution, respectively.

Copyright ©1996, American Institute of Aeronautics and Astronautics, Inc.

Fuzay Logic Systems (FLS)

A recently developed field in mathematics, the
theory of fuszy sets and the logic stemming from it
has been gaining ground as a system identifier, some-
times at the expense of ANN popularity. In fact, in the
semiconductor industry, microcontroller pundits pre-
dict that semiconductor-based fussy technology will
be as prevalent in products by the end of the decade
as microprocessor technology is today. Although tra-
ditionally, fuzsy logic has been viewed as s technique
for representing imprecise, ambiguous and vague infor-
mation, nothing prevents it from successfully dealing
with concrete, quantitative and precise data. In fact,
the Universal Approximation Theorem stated below
proves that fuzsy logic systems are capable of uni-
formly approximating any nonlinear function to any
degree of accuracy.

Figure 3 presents a schematic of the basic con-
figuration of the fuszy logic systems proposed in this
work. The fussy rule base consists of a collection of
fussy if-then rules in the following form:

RO : Mz is Ff and ..and 2, is FS, THEN y is G¢,

where F! and G* are fuszy sets,

X =(zg,...,z,.)r ,y are the input and output lin-
guistica variables, respectively, and £ = 1,... M
with M being the numbers of rules.

However, in engineering systems, inputs and out-
puts are real-valued variables in crisp sets and not lin-
guistic variables in fuzzy sets. The conversion from the
former to the latter and vice-versa is achieved through
the fussifier and defuzsifier respectively. The fuszy in-
ference engine is the heart of the system and maps the
fussy inputs to the fussy outputs, properly employ-
ing the rules from the fuszy rule base. In one of our
approaches we use center average defussifier, product-
inference rule, singleton fuzsifier and Gaussian mem-
bership function. Then the fuzzy system reduces to:

)= ‘111‘[3&10.‘“? (— ( ’7"“)2)] o

T, [rrdters (- (32£) )]

where z = (z;...,z..)r €U (U is the universe of dis-
course) is the input vector, n is the number of an-
tecedents (inputs) and M is the number of rules.
+zf,0%,a} are the parameters of the Gaussian mem-
bership functions and y are the centers of the out-
put fuzsy sets. Although our techniques are capable
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of identifying multi-input, muiti-output systems, here
to facilitate the reader’s understanding, a multi-input,
single-output system is presented. We state here the
following University Approximation Theorem®*:

For any given real and continuous function g on a
compact set u¢ R" and arbitrary ¢ > 0 there exists
a fuzzy logic system f in the form of (A) such that

f(z)-9(2)

8UPgely <e

Generating rules and membership functions for fuszy
logic is essentially a learning process. Here is where
the utilization of neural network techniques enters
our modeling process. Using supervised learning, a
neural network can generate or sort out rules and tune
the membership function parameters. For instance,
for the single-output system (A) training is achieved
using a back-propagatxon algorithm to determine the
parameters z{, o, y° (without loss of generality the
af’s are set equal to 1),

Fuzsy Logic Training Algorithm

Wang [4] shows that the fuzzy logic system given
by Eqn. (1) is an optimal fuzzy logic system in the
sense that the Gaussian shape variable, o, can be
chosen such that the output of the fuzzy logic sys-
tem matches any given N input-output pairs to any
given accuracy. A nearest neighborhood clustering al-
gorithm is used to train the system starting with the
first input-output pair. A cluster center is established
and a cluster radius is chosen. If the distance between
any subsequent input-output pair and the current clus-
ter is greater than the cluster radius, then a new clus-
ter center, or fuzay rule, is established. This continues
until all training I-O pairs are used. The fussy logic
system thus has two independent variables, the cluster
radius and the Gaussian shape variable, which must be
chosen before the system can be trained. These vari-
ables greatly affect the complexity and accuracy of the
fuzzy logic system and will vary based upon the needs
of the user.

The cluster radius determines the minimum
amount that one point in the training data must dif-
fer from all other points in order to be part of 2 new
fuzzy rule. The advantage of this clustering method is
that for any given system and cluster radius there is
a limit to the number of fuzay rules which can be cre-
ated. Thus the cluster radius directly determines the

American Institute of Aeronautics and Astronautics, Inc.

complexity of the fussy rule base for any given sys-
tem. In this study, the amount of training data was
minimal: For this reason, the cluster radius was usu-
ally chosen small enough such that every input-output
pair created a new fuzsy rule.

The Gaussian membership function shape vari-
able is a amoothing variable. If the Gaussian shape
variable is large, then it has a smoothing effect and
the result will be a very generalized fussy logic sys-
tem. This may be useful in systems where data are
noisy but could have an adverse effect on complex sys-
tems. If the Gaussian shape variable is small, then
predicted outputs will have nearly the same magni-
tude as the closest training cluster center, particularly
when the training data is sparse. Thus a compromise
between generalization and accuracy must be made,
depending on the complexity of the system, quality of
data, and sparseness of data. It is generally not dif-
ficult, however, to determine an appropriate value for
the Gaussian shape variable through a few trial-and-
error procedures.

Neural N k Training Algorit} -

Using the pitch-up delta wing data, a neural net-
work was trained to predict the spatial and temporal
pressure coefficients on the surface of the wing. Data
were provided for four pitch-up rates, 22°/s, 40°/s,
48°/s, and 66°/s, in the form of pressure coeficients
for 15 pressure ports. The ports were equally spaced
from the centerline of the delta wing out to the lead-
ing edge. Pressure profiles for several instantaneous
angles of attack in each pitch-up schedule provide the
input data for the neural network.

The network was trained using backpropagation.
A three-layer (two hidden layers) network was used for
the present study (Fig. 4).

The input vectors consist of port number, instan-
taneous wing angle, a(t), and pitch rate, a(t). The
fact that the pressure ports are equally spaced allowed
for use of the port number (integer from 1 to 16) as
s network input instead of each port’s actual distance
from the leading edge. The network output is the in-
stantaneous pressure coefficient G,(t). The first and
second hidden layers consisted of 8 and 4 neurons, re-
spectively, with log-sigmoid activation functions. The
output layer consisted of one neuron with linear ac-
tivation function. The functional description of the
log-sigmoid activation function is:

G(z) = (2)

1
l4e*




The linear activation-function is:
G(z)= Az +b 3)

where z is the input value. The backpropagation
method utilized Levenberg-Marquardt optimization
techniques. This approach uses an approximation of
Newton’s method for updating the weighting coeffi-
cients. The Levenberg-Marquardt weight update rule
is:

AW = (JTJ +wl) ™ JTe @)

where J is the Jacobian matrix of the derivatives of
error with respect to weight and ¢ is the error vector.
The scalar multiplier, w, influences the update rule.
When w is large, the update rule is approximately
the gradient descent method and when w is small, the
update rule approximates the Gauss-Newton method.
The multiplier is adjusted in the back propagation
training procedure to maintain small errors. This
technique allows for faster convergence than a purely
gradient descent method.

Results

The results in this study were produced from two
sets of training data. The first set was obtained on
the DyPPiR apparatus in Virginia Tech's stability
tunnel and contains pressure coefficients at spanwise
pressure ports acroes half of a pitching delta wing for
various pitch-up rates. The ports are located at z/c
= 0.61. Thus, when training with these data, the
fuzsy logic system was given port number p;, pitch-
up rate o, and angle of attack «&, as inputs with the
pressure coefficient as the desired output. The second
set of data were obtained in Virginia Tech’s ESM wind
tunnel and contains pressure coefficients across the
entire span of a pitching delta wing for various cavity
flap deployment schedules. The cavity flap deployment
schedules consisted of pitch-up motions from 28° to
61° with flaps not deployed, deployed at 32°, deployed
at 40°, and always deployed. When training the fuzzy
logic system with these data, the system was given
port number, time, angle of attack, and a deployment
flag ( 0 if no t deployed, 10 if deployed ) as inputs with
the pressure coefficient as the desired output.

First the fuzzy logic system was trained using
the DyPPiR data with all pitch-up rates and angles
of attack except for the angles of attack of 36.02°
and 44.04° for the pitch-up rate of 48.6 degrees per
second. The trained system was then used to predict
the pressure distributions at the missing angles and the

Copyright ©1996, American Institute of Aeronautics and Astronautics, Inc.

results are shown in Figs. 5 and 6. Note that several
different values were used for the Gaussian shape
variable in otder to show how the system responds to
variations of this parameter. Figure 7 shows the actual
pressure distributions over the wing at 36.02° as well as
at the prior and following angles of attack and also the
interpolated curve between these two. It is necessary
to examine these curves to avoid the impression that
the fussy logic system is simply an averaging system.

In an attempt to increase the accuracy of the fuzzy
logic predictions at the angle of attack of 44.04°, the
system was retrained with the pressure coefficient at
port 3 for the target angle included in the training
data. The resuits from this training are shown in Fig.
8. The system was then retrained adding one more
point at the target angle until four additional points
were included beyond those used in the initial training.
These results, shown in Fig. 9, would indicate that a
well trained system would be able to accurately predict
the pressure distribution over an entire wing with only
a small sample of the pressures over the wing.

In order to allow for comparisons between the
fussy logic and neural network identification systems,
the system was then trained with all of the data
obtained from the DyPPiR apparatus. The trained
system was then used to predict all of the spanwise
pressure distributions for each angle of attack included
in the 48.6°/s pitch-up rate data files. Since all of
the predicted values were included in the training
data, it is expected that the fuzsy logic predictions
should exactly match the actual data. It can be
seen in Fig. 10 that the predicted values do indeed
correspond exactly with the actual data values. These
results may not be significant from a potential controls
standpoint but they do verify that the fuzay logic
training algorithm is functioning as expected.

Next the system was retrained using every other
point from the data files for all five pitch-up schedules.
The fuszy logic model was then once again used to
predict pressure distributions, shown in Figure 11, for
all angles of attack for the 48.6° /s pitch-up rate. In
order to form an accurate model, it was necessary to
use a value of 1.5 for the Gaussian shape variable in
the training of the fusay logic system. The necessity
of such a lazge value for this variable indicates that
the training data set is becoming sparse and does not
bode well for the success of a more widely distributed
set of data.

The system was then trained one final time using
every third point from the data files for every pitch-up
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schedule. Once again the fuzay logic model was used
to predict the pressure distributions for the 48.6°/s
pitch-up rate. In order to even closely approximate the
original data, it was necessary to use a value of 2.0 for
the Gaussian shape variable. Although the predicted
data does follow the original data fairly well, as seen
in Fig. 12, the model does demonstrate ripple and
undershoot. This is a characteristic of a model which
is too generalized as a result of using a large Gaussian
shape variable to counteract a sparse training data set.

In an effort to test the effectiveness of the fuzsy
logic system when used in conjunction with control
surfaces, the system was trained with three of the
four available cavity flap deployment schedules. The
system received as input the data from the always
deployed and never deployed schedules in addition to
the 32° deployment schedule. The resulting fuszy logic
model was then used to predict pressure distributions
at all times for the 40° deployment schedule. Figure 13
shows a spectral plot of the absolute error between the
actual and predicted values for all spatial and temporal
locations. It can be seen that the error is relatively
small for all times with a maximum error occurring at
approximately 0.4 seconds. Figure 14 shows the actual
and predicted pressure distributions for this maximum
error case. Figure 15 through 18 show the actual
and predicted pressure distributions at quarter second
intervals and Fig. 19 shows the pressure distribution
immediately following the deployment of the cavity
flaps. All of these predictions are good appraximations
of the actual data considering the limited amount of
available training data.

Finally, it was desired to test the fussy logic
system with an extremely limited amount of training
data. To achieve this purpose the system was first
trained with the full data sets from the fully deployed
and never deployed cavity flap schedules in addition
to all the data from ports 3 and 7 from the 32° and
40° deployment schedules. The resulting model was
then used to predict the pressure distributions for the
32° and 40° deployment schedules for all spatial and
temporal locations. The error spectrum resulting from
these two sets of predicted data are presented in Figs.
20 and 21. The process was then repeated with the
addition of data from port 2 from the 32° and 40°
deployment schedules and then again including port 6.
The error spectrum plots for the three point training
are shown in Figs. 22 and 23 and those from the
four point training in Fig. 24 and 25. Although the
magnitude of the maximum error does not decrease as
the number of training points increases, it is observed

from the error spectra that the overall error of the
model does decrease as the complexity of the training
is increased. The maximum error and quarter second
preseure distributions for the four point predictions
of both the 30° and 40° deployment schedules can
be seen in Figs. 26 through 35. Although these
results stray somewhat from the original data, they
are still encouraging in light of the limited number of
deployment schedules available for training the system.

The neural network was first trained also with
the entire available database. The intention here was
to show whether or not an accurate model for the
aerodynamic system could be found in the firat place,
that could match the existing data. This process led
us in heuristically identifying a network architecture
(layer and neuron arrangements, activation functions,
etc.) that performed optimally. The trained network
was then used to predict the pressures at intermediate
ports (port numbers 2.5, 3.5, etc.) to ensure that
the model was not ill-behaved between the training
data, although experimental data was not available
at such ports. The results are presented in Fig. 38.
For all angles of attack and port locations, there is
excellent agreement between the predicted pressurg
coefficient from the trained network and the actual
data. The above graphs show that the predicted
values for these conditions are consistently within an
acceptable accuracy.

Figure 37 presents predictions with training per-
formed on the network using every other point from
the data files for each pitchup schedule. The above
graphs show the results for the pitchup rate of 48° /sec.
There is good agreement for all angles of attack and
port locations between the predicted output pressures
and the actual data with some regions where the model
accuracy is compromised. For this training condition,
the network is trained with fewer data points but over-
all, still predicts output values within acceptable ac-
curacy over the entire spatial (port number) and tem-
poral (angle of attack) ranges.

Results of training performed on the network
using every third point from the data files for each
pitchup schedule are presented in Fig. 38. The graphs
show the results for the pitchup rate of 48°/sec. It
should be noted that the overall model prediction
capability is still very good.

Figure 39 shows the results from training the
network with 50 randomly selected points from the
data for the pitchup rate of 48° /sec. Agreement is very
good for most angles of attack and pressure ports.




Finally, training was carried out using half of all
the data for all the pitch-up rates. Figure 40 shows
predicted vs. actual data for pitch rate of 22 deg/sec
and Fig. 41 for pitch rate of 40 deg/sec. '

Conclusions

A fuzzy logic and neural network system were
trained with pressure data obtained experimentally
over a maneuvering delta wing. This was essentially a
feasibility study to demonstrate the sensitivity of each
technique to the number of available data for training.

It is indicated that highly non-linear phenomena
can be quite accurately predicted. The power of
such methods is that once a system is trained, then
a minimum number of input sensors is necessary to
generate a new prediction. The practical importance
of such a scheme is that a system can be trained
by flight data. Four or five sensors on a prototype
aircraft will be enough to generate accurate prediction
which could be used to activate computerized control
of the aircraft attitude. This idea was tested by
provided information at only four pressure portions
and requiring the system to predict the overall pressure
distribution.

A great advantage of such systems is that training
can be carried out on board and, in fact, continuously
improved as more data becomes available. This is
presently being simulated.
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Fig. 1: The delta wing model.
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Abstract

A fuzzy logic identification code was prepared.
The program was trained with experimental data of
pitch and roll of a ship model at various incidences
to oncoming waves. The program can then predict
the response of the model to any wave and at any
incidence.

1. Introduction

The skipper of a sinall sailing boat receives a
variety of signals through his (celing of the heeling
and pitching of his vessel, his fecling of accelerations
in heeling, pitching and yawing, the feeling of sheet
and tiller resistance, the observation of sail shape and
tell tail direction and the shape and direction of the
waves. In response to all these inputs and with very
little brain action, he sustains a very delicate balance
of various forces exerted on his vessel, maintains its
stability and maximizes its perforinance.

It would be desirable for any naval vessel to
be equipped with a central processing unit, say the
“brain” of the vessel, that would receive signals from
a variety of sensors and respond accordingly with
controls that would produce the desired motion. Mcre
specifically, such a unit should be able to recognize
quickly the charactleristics of the sea surface, like
direction, wavelength, etc. of all oncoming waves,
wind direction and strength, predict the response of
the vessel for the iminediate future and activale the
necessary controls to achieve a desired motion. With
the speed and capacity of today’s computers and the
development of thie theory of fuzzy logic systemns
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and artificial neural networks this is today well within
reach.

Fuzzy logic and neural nets have been employed
successfully so far as identifiers of dynamic flow phe-
nomena. Schreck et al! demonstrated application in
unsteady aerodynamics of system-identification and
modern control methods based on the use of artificial
neural networks (ANN). ANNs were shown to success-
fully model vortex dynamics principles’2. Further at-
tempts were also reported later34. Fuzzy logic systems
(FLS) appear to be equally capable system identifiers.
Comparisons of the two techniques*®, i.e., ANN versus
FLS in different applications seem to favor the latter.
Ilowever, we believe that neural networks and fuzzy
logic have complementary strengths and a symbiotic
relationship between the two holds the secret to effec-
tive system identification and control.

In this paper we report on the training of a
fuzzy logic program in terms of data obtained in a
towing tank. A ship model is allowed to respond to
waves at various incidences. Its response to pitch and
roll is recorded as well as the characteristics of the
incident waves and the incidence angle. The model’s
response for arbitrary values of the parameters are
then predicted.

2. Fuzzy-Logic Identifier & Controller

In a simplistic way, a [uzzy-logic system can be
thought of as a black box that can be trained to pro-
vide certain outputs, if fed with certain inputs. This
task of course can also be executed by any spline algo-
rithim, or interpolating routine. However, fuzzy-logic




systems (FLS) can carry out such tasks faster, requir-
ing much less computer space. Another great advan-
tage of FLS is that they can be continuously upgraded
simply by adding more data to an existing system
or even adding new controlling variables. In simple
terms, such systems “learn by experience.” Morcover,
they can admit as input, either crisp numerical data
or fuzzy linguistic commands.

The fuzzy logic system used in this experiment is
based on an optimized systein as outlined by Wang?
for identifying non-linear systems in countrol applica-
tions. The program which was used has been under

development with the goal of cventually controlling

systems whose aerodynamic/hydrodynamic effects are
too complex to model for classical control purposes. In
its early stages of development, the program has been
used successfully to fit complex curves based on partial
data sets It accepts as input the following data: A clus-
ter radius for determining the conplexity of the fuzzy
rule base, a Gaussian meinbership function shape vari-
able which determines the eflect of a fuzzy rule on its
surroundings, and the training input-output pairs.

The cluster radius deterinines the minimum
amount that one point in the training data must dif-
fer from all other points in order to be part of a new
fuzzy rule. The advantage of this clustering method is
that for any given system and cluster radius there is
a limit to the number of fuzzy rules which can be cre-
ated. Thus the cluster radius directly determines the
complexity of the fuzzy rule hase for any given sys-
temn. Ilecre, the cluster radius was cliosen so that each
input-output pair created a new rule, thereby ensuring
that the program would return accurate values at the
original data points.

The Gaussian membership [unction shape vari-
able has by far the most significant effect on the
sinoothing effect of the predictor program and there-
fore thie most care must be taken in its specification.
If the shape variable is too small, then all predicted
values will take on the magnitude of the nearest fuzzy
rule, resulting in large regions of like points. [f, on
the other hand, the shape variable is chosen too large,
then a fuzzy rule will effect a large area of surrounding
values, possibly including other rule supports or center
values. This will result in very simooth but inaccurate
results. It is, therefore, imperative that a reasonable
compromise be deterimined between these conditions.
For the purposes of Lhis experiiment, this compromise
was found through trial and error, although it seems
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likely that with a thorough knowledge of the input-
output ranges and the cluster radius, a more rigorous
method of determining this value should be possible.

3. Facilities, Instrumentation and Procedure

The Virginia Tech towing tank has a 4x6 ft cross
section and is about 100 ft long. This tank is equipped
with a wave making machine. Waves with different
amplitudes and wavelengths were generated. Their
characteristics were monitored by two free surface
elevation sensors. A ship model was placed in the tank
at various incidences to the oncoming waves as shown
in Fig. 1. The model was mounted on the carriage
by a mechanism that permits heave, pitch and roll but
restrains and controls the angle of incidence. Linear
transducers provide signals proportional to pitch and
roll.
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Fig. 1 Schematic of model mounted on a heave post
that will allow pitch and roll through a gimballed tow
point.

The fuzzy logic system was trained with data ob-
tained with different wave characteristics and ship inci-
dences. The idea was to train the artificial intelligence
system to predict the response of the vessel, namely
pitch and roll characteristics to new conditions. More
specifically, the ship “learns” to recognize the condi-
tion of the sea it finds itself in. It then predicts how
it will response, if it points in a different direction.

In order to test the ability of the fuzzy logic
system to predict the dynamic response of the vessel
to oncoming waves, it is first necessary to somehow
quantify the waves themselves. In this experiment,

C o o
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time records of the oncoming waves were recorded,
using capacitance driven water level indicators, along
with the responses of the vessel. By taking the
data in this manner, we are able to post-process the
time record to reveal magnitude or frequency data as
necessary. Since the fuzzy logic system is capable
of recognizing non-linear relationships between the
inputs and outputs of the system, it was decided
to attempt to train the system using the angle of
incidence, wave magnitude, wave [requency , and wave
height as common inputs. In addition, when trying to
predict the roll position of the vessel, the pitch was
used as an additional input and vice versa.

The data taken for this experiinent consisted of
13 angles of incidence ranging from -30° to 30° in
5° increments. The incident waves were generated
at three different magnitudes at 0.25 Iz and 0.5 llz
for a total of 78 different data scts. Each data set
in turn contained time records of two water level
transducers separated by 21”7, the roll angle of the
ship, and the pitch angle of the ship. Each Lime
record was 10 seconds long and was sampled at 100 lz.
Unfortunately, it was determined after the data had
been taken that the largest magnitude wave at 0,5 Ilz
was allected by some sort of mechanical interference
and thus had to be removed from the training set.

4. Results, Conclusions & Recommendations

To test the code, a case for intermediate values
of the parameters was predicted. At these values of
the parameters data were also obtained which were
not employed in the training of the fuzzy-logic system.
In this way it was possible Lo commpare directly the
predicted behavior against experimental data.

Typical resulls are presented in Figs. 2 and 3
for roll and pitch respectively, for an incidence of
15° at a wave frequency of 0.5 llz. The phase and
frequency of the response of the model are predicted
reasonably well. Ilowever, the waveform coutains
higher harmonics which are not present in the actual
data.

These results are prelitninary in nature and are
uot satisfactory at present. Much better predictions
were achieved earlier for other experimental data.
Apparently ship motions are highly nonlinear and may
require more input parameters in order to facilitate
more accurate predictions.
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Fig. 2 Predicted and actual roll of the model at a
wave incidence of 15° and a frequency of 0.5 Hz.
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Fig. 3 Predicted and actual pitch of the model at an
incidence of 15° and a frequency of 0.5 Hz.

Fuzzy-logic systems could also be trained to con-
trol motions®. To this end, data must be collected on
the response of a body to the deployment of control
hardware. Consider again, for example, a model ves-
sel equipped with two fins which could be activated to
control its roll. Dilferent amplitudes and frequency
motions of the fins are generated and the response
of the vessel is monitored via its sensors. These pre-
scribed tests are repeated with the vessel placed in a
wavy sea and again the data are employed to train the
FLS. The system now can be used to predict the char-
acteristics of deployment necessary to achieve a cer-
tain motion. This is a theoretical exercise but its im-




plementation is straightforward although a little more
involved.

The FLS controller decides what level of deploy-
ment is necessary to achieve the desired motion in the
specific environment. For exaruple, what angle of fin
action is needed for the specific waves the vessel is en-
countering. The controller then activates the control
hardware. The FLS continuously samples its sensors
to follow up the motion and compares its progress with
its predicted motion. It corrects in real time for small
perceived discrepancies and uses this new information
to improve its “understanding” i.e., to further train
itself.

This effort is continued and the authors will report
subsequent results in future publications.
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A Fuzzy Controller for High-Alp\)ha Delta Wing
Maneuvers with Deployable Control Surfaces

Othon K. Rediniotis’, Norman W. SchaefRer* and Demetri P. Telionist
Virginia Polytechnic Institute and State University
Blacksburg, Virginia

Abstract

Fuzzy logic system-identification and control techniques are employed in high-alpha
delta-wing unsteady aerodynamics. A cavity-flap equipped delta wing is executing pitch-
up maneuvers while the cavity flaps are dynamically employed aiming to modify and control
the behavior of the two leading-edge vortical structures and thusly their effect on the pres-
sure distribution and aerodynamic loading of the wing. First a fuzzy identifier is constructed
to predict the temporal evolution of the leeward pressure distribution and the aerodynamic
loads for given time histories of pitching, a(t), &(t) and flap deployment ¢(t), 4(t). Then,
a fuzzy controller is devised which, for defined of(t), a(t) yields the cavity-flap deployment
schedule ¢(t), ¢(t) so that a desired time history of L/D is achieved.

Introduction

The aerodynamics of supermaneuver-performing aircraft has been a great challenge to
aerodynamicis¢sbut still many questions in this area are unanswered. This is partly due
to shortage of wind-tunnel hardware able to simulate complex supermaneuvers of sensor-
instrumented models and allow the measurement of the properties of the model-lowfield
interaction. Moreover, when the contro] of these interactions becomes our objective, the
task becomes understandably overwhelming: different flow-control devices have to be tested,
each one at several different dynamic deployment schedules and rates, as well as testing
of combinations of flow-control devices. When a Asufﬁciently large data bank of these test
data is generated, then the daunting question emerges: How is all this information efficiently
implemented into the next generation super-agile aircraft? Since the rapid rates of motion
during a supermaneuver are beyond the pilot’s response limits, an active controller between
the pilot and the aircraft is necessary. To reinforce the gravity of the problem along comes the

inadequacy of the conventional adaptive control schemes: the high rates and large motion
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amplitudes involved in a supermaneuver preclude the local linearization of the strongly
nonlinear governing equations.

The application in unsteady aerodynamics of system-identification and modern con-
trol methods based on the use of artificial neural networks (ANN) have been recently
investigated! 3. There!, ANNs were shown to successfully model vortex dynamics prin-
ciples. However, further attempts to implement neural network controllers® did not seem to
provide sufficient accuracy. Similar occurrences in other fields* have cost ANN popularity
some loses. In fact, as discussed later, fuzzy logic systems (FLS) seem to be partly prof-
iting from these ANN loses. Comparisons of the two techniques*®, i.e., ANN versus FLS
in different applications seem to favor the latter. However, we believe that neural networks
and fuzzy logic have complementary strengths and a symbiotic relationship between the two
holds the secret to effective system identification and control.

In this paper we first demonstrate that fuzzy logic methods can successfully identify
nonlinear aerodynamic systems. Our system consists of a pitching delta wing with dynam-
ically deployed cavity flaps during the maneuver. We identify the effect this system has on
the temporal evolution of the leeward-side pressure distribution as well as the aerodynamic
loads. Once a system model has been generated, a fuzzy controller is constructed with the
objective to control the cavity-flap deployment schedule during pitch-up, so that a certain
optimization criterion is satisfied, for example, the maximizing of the ratio L/D (lift over

drag) for all times during the maneuver.

Facilities and Instrumentation

The present research is being conducted in the VPI & SU Stability Wind Tunnel. This
Tunnel has a 6' x 6' test section and an excellent quality of flow. The tunnel has been recently
equipped with a dynamic strut which was given the acronym DyPPiR for “Dynamic-Plunge-
Pitch-Roll” mechanism. The design, construction and calibration of this facility involved

many faculty at VPI & SU, under the direction of Dr. Rogér Simpson and five years of




intensive work. A discussion of the main elements of the design can be found in Ref. 6 and
the accompanying instrumentation in Ref. 7.

The DyPPiR can provide simultaneous plunging, pitching and rolling of models on the
order of 100 b in weight, at a frequency of up to 10 Hz, depending on the amplitude of the
motion. These motions can be independently controlled by software. Any combination of
arbitrary motions is possible. In this case, pitch up motions are executed. Such motions have
been tested earlier in two much smaller facilities®?, a wind tunnel and a water tunnel and at
Reynolds numbers of the order of 10*. Simultaneous plunging of the DyPPiR carriage and
pitching of the pitch actuator induces pitching of the model about its quarter-chord axis.
The aim here is to control the leading edge vortices and delay breakdown, while pitching up
to high angles of attack. This is pursued by deploying cavity flaps.

In the present experiments we employ a 2’ x 3’ delta wing model (Fig. 1) which has
been tested extensively in this facility in steady flow’. The model is hollow to provide
space for instrumentation. The top surface of the model is equipped with three rows of
pressure taps. Pressure transducers are positioned beneath the instrumented surface to
provide unsteady pressures with a high frequency response. A 32-transducer Electronic
Pressure Scanner (ESP) from PSI, Inc. with a pressure full scale of £ 20 in H,0 was
employed. The ESP Pressure Scanner was interfaced with a laboratory computer and was
on-line calibrated through instrumentation by AEROPROBE Corp. The system consists
of an ESP interface/data-acquisition board PDA-3101 (31 KHz max sampling rate) and an
ACCUPRES computer-controlled, on-line pressure calibrator. Figures 2(a) and 2(b) present
the coordinate systems used and the pressure port distribution, respectively.

Figure 3 presents the carriage actuators, sting and delta-wing model as seen from up-
stream. A view of the same setup from downstream is shown in Figure 4. A six-component

dynamic balance was employed to measure the aerodynamic loads.

Fuzzy Logic Systems (FLS)
A recently developed field in mathematics, the theory of fuzzy sets and the logic stem-
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ming from it have been attracting attention, sometimes at the expense of ANN popularity.
In fact, in the semiconductor industry, microcontroller pundits predict that seminconductor-
based fuzzy technology will be as prevalent in products by the end of the decade as mi-
croprocessor technology is today. Although, traditionally, fuzzy logic has been viewed as
a technique for representing imprecise, ambiguous and vague informa.tién, nothing prevents
it from successfully dealing with concrete, quantitative and precise data. In fact, the Uni-
versal Approximation Theorem proves that fuzzy logic systems are capable of uniformly
approximating any nonlinear function to any degree of accuracy.

Figﬁre 5 presents a schematic of the basic configuration of the fuzzy logic systems pro-
posed in this work. The fuzzy rule base consists of a collection of fuzzy if-then rules in the

following form:
RO : Iz is Ff and ... and z, is F¢, THEN y is GY, (1)
where Ff and G¢ are fuzzy sets,

x = (z1,..., zn)T, y are the input and output linguistic variables, respectively, and ¢ =

1,...,M with M being the number of rules.

However, in engineering systems inputs and outputs are real-valued variables in crisp sets
and not linguistic variables in fuzzy sets. The conversion from the former to the latter and
vice-versa is achieved through the fuzzifier and defuzzifier respectively. The fuzzy inference
engine is the heart of the system and maps the fuzzy inputs to the fuzzy outputs properly
employing the rules from the fuzzy rule base. In one of our approaches we use center average
defuzzifier, product-inference rule, singleton fuzzifier and Gaussian membership function.

Then the fuzzy system reduces to:

st st ()

3

F(z) = N2 (2)
Z%—_l [H?:laf €Tp (— (%) )]
where £ = (21 ..., 2,)T €U (U is the universe of discourse) is the input vector, n is the number

of antecedents (inputs) and M is the number of rules. zf, ¢, a¢ are the parameters of the
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Gaussian membership functions and gl are the centers of the output fuzzy sets. Although
our techniques are capable of identifying multi-input, multi-output systems, here to facilitate
the reader’s understanding, a multi-input, single-output sysfem is presented. We state here

the following Universal Approximation Theorem?:

For any given real and continuous function G on a compact set Ue R™ and arbitrary € > @

there exists a fuzzy logic system F in the form of Eq. (2) such that

Here is where the utilization of neural network techniques enters our modeling process.
Using supervised learning, a neural network can generate or sort out rules and tune the
membership function parameters. For instance, for the single-output system (2) training is

£ ¢

achieved using a back-propagation algorithm to determine the parameters z;, of, g‘ (without

loss of generality the af’s are set equal to 1).
Sample Results and Discussion
System Identification

We first explore the capabilities of fuzzy logic systems to model the dynamic evolution
of the pressure distribution on the leeward side of the model. The 75°-sweep delta wing
was pitched from o = 28° to o = 43° with several different time histories of o(t) and &(t).
During this maneuver the two cavity flaps were deployed from ¢ =0°to ¢ = 30° (Figure 6)
with several different deployment schedules #(t) and é(t), and for each of these experiments
the pressure distribution was captured at 900 time instances during the pitch-up. Each
experiment was repeated 20 times and the pressure data were ensemble-averaged.

From all the collected pressure data a data bank was formed and was subsequently used
to generate the fuzzy identifier. Qur objective was to devise an identifier like the one shown
in Fig. 7 which, given the time histories, a(t), a(t), é(t), qS(t) and the pressure distribution
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at ¢t = 0 would be able to predict the entire temporal evolution of the pressure distribution
during the dynamic maneuver.

We developed an algorithm in C** that implements a fuzzy rule base for any n-input,
m-output system. The number of fuzzy regions per domain of antecedent and consequent is
adjustable and so is the choice of membership funetion. In our first trials we used triangular
membership functions. However, at laf‘ter effort, gaussian membership functions were found
to work better. In results presented here we use thé latter approach. The rules are generated
initially from a set of input-output pairs. Each rule is assigned a degree equal to the product
of the membership values of the antecedents and consei‘fﬁeﬁt. A rule is stored in the rule
base only if a similar rule with higher dégree does not a.lféady exist. That minimizes the
number of rules, and makes the defuzzifing process faster.

Figure 9 presents the comparison between the predicted and the actual pressure distri-
bution for the case ¢(t) = const = 0, ¢(t) = 0 (flaps not deployed) and for the a(t) shown
in figure 8 with &(t) = 0.38 rad/sec The figure presents the pressure distribution along a
cross-flow pressure port line (upper row in figure 2(b)), at different time instants during the
maneuver, or equivalently, at different angles of attach. Only half of these data, arbitrarily
chosen, were used in the fuzzy rule base generation. Nevertheless, the prediction is excellent
for the entire data set.

Figure 10 presents the pressure distribution (predicted and actual) along the same pres-
sure port line in different conditions, i.e., ¢(t) = const = 30°, $(t) =0 (flaps deployed) for
the a(t) shown in Fig. 8 and a(t) = 0.38 rad/sec.

The same fuzzy identifier is also employed to predict the integrated effect of the pressure
distribution, i.e., the aerodynamic loads L (lift), D (drag), M, 4(quarter chord pitching

moment).




In the final version of the paper, comparison between the predicted and the actual Cp(t),

L(t), D(¢), M_/4(2) will be presented for several combinations of time histories a(t), a(t),

8(1), B(2).

Fuzzy Controller

In the second part of this work the accumulated experimental data base is used to
construct the fuzzy controller shown in F igure 11: for defined histories of a(t) and &(t) the
controller has to yield the cavity flap deployment schedule qS(t) qb(t) so that a desired time
history of the ratio E(t) is achieved It is obvious that th(; de31red 7 time history has to be
within the limits of the a,erodynarnlc effectiveness of the cav1ty flaps.

The pressure contour plots shown in Fi 1g. 12 demonstrate the effect the cavity flaps have
on the leeward-side pressure distribution along a cross-flow pressure port line (upper row in
figure 2(b)). The image shows the evolution of the surface pressure as a function of angle of
attack, or as a function of time. The fact that the pressure coefficient in the “without flaps”
case has peaked and is beginning to decay is shown as the “island” of red in the upper left
hand corner. In the “with flaps” case, the two yellow sections show evidence of merging and
a new peak is just beginning to form as the motion ends.

From the above it is evident that in order to achjeve high suction and therefore high lift
values, throughout the entire maneuver, a composite cavity flap actuation schedule has to
be employed. This schedule should involve none or low flap deflection at moderate angles
of attack and full actuation at high angles where, as shown in F ig. 12, the flaps have their
maximum effect in improving the suction. The fuzzy controller’s objective is to determine
this optimum schedule. The final version of the paper will present such optimum actua-
tion schedules and their effect on pressure distribution and aerodynamic loading for several
different histories of a(t), a(t).

‘Our fuzzy controller has the following major advanta.ge: it is expandable. This means
that as more experimental data become available it can be used to expand the controller’s
fuzzy rule base. Thus, additional cavity-flap data could be used to improve the controller’s
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accuracy while data from experiments testing different control surfaces, or devices, such as
apex flaps or leading-edge blowing could be used to expand the controller’s capabilities.
However, the more complex the controller becomes the larger the number of fuzzy rules.
It could easily reach the order of hundreds or thousands. This, in turn, means that, in
order to implémeﬁt a real-time controller for a maneuvering delta wing with several different
control devices, the speed of 32-bit processors does not suffice, even when as few as 50
control action. More than one fuzzy coprocessor could be parallelly implemented to expand
the system. This is why we are currently hardware implementing a dedicated fuzzy controller
based on the VY86C570 12-bit FCA fuzzy coprocessor. Its inference speed is 10 times that

of the conventional 32-bit processors.
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Fig. 1 The delta wing model.
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Fig. 2 Coordinate systems used for the pressure data and pressure port distribution on the
leeward side of the model; all dimensions are reduced by the chord length C.




Fig. 3 The carriage, acutators, sting and model as seen from upstream.




Fig. 4 The setup of figure 3 in a view from downstream.
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Fig. 6 Delta wing - cavity flaps configuration.
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Fig. 11 The fuzzy controller configuration.




Angle of Attack ¢ | dey j

43
41
39
37
35
33
31
29

Angle ot Attack . (deg)

27 :,..|,,..w;-.:,‘.,|,,‘.f..,,
0 2 4 6 8 10 12 14 16

increasing Distance from the Leading Edge

@ Without Flaps

0+

-0.272727 to N
-0.545455 to -0.272727
-0.818182 to -0.545455
-1.09091 to -0.818182
-1.36364 to -1.09091

- 27

Tj

ll'l|rTlI!llxI]Tflllr"[]lll!'llll’ll

0 2 4 6 8 10 12 14 16

fncreasing Distance from Leading Edge

» With Flaps

-1.63636 to -1.36364
-1.90909 to -1.63636

. -2.18182 to -1.90909

-2.45455 to -2.18182

- =2.72727 to -2.45455

B -3to-2.72727
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steady flow: (a) flaps off (b) flaps on




